학회 연락처
- +82-2-563-0935
- +82-2-558-2230
- submission@kssse.or.kr
- https://www.kssse.or.kr/
The Korean Society of Surface Science and Engineering 2024;57(3):192-200. Published online: Jul, 8, 2024
DOI : 10.5695/JSSE.2024.57.3.192
Cu as a heat exchanger tube is an important component in thermal fluid transfer. However, Cu tubes are exposed to stress in certain environments, leading to stress corrosion cracking (SCC). In this study, the effect of Sn addition on microstructure and corrosion characteristics was examined. The microstructural examination revealed the presence of columnar crystal and a grain refinement due to the addition of Sn. Electrochemical measurements showed that the 5 wt.% NH3 environment was the most vulnerable environment to Cu corrosion, and the corrosion current density increased as stress increased. The immersion test exhibited the formation of Cu2O and Cu(OH)2 corrosion product in 3.5 wt.% NaCl and 5 wt.% NH3 environments, respectively. Results indicated that Sn addition to Cu was an important factor in improving the mechanical strength.
키워드 Cu tube; Sn addition; U-bending; Stress corrosion cracking (SCC); Immersion test; Corrosion characteristics.